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. •INTRODUCTION
Name assignment is the procedure by which an identifier is assigned

to the nodes of a network to be used subsequently by other networking
mechanisms. The problem of name assignment has not been properly dealt
with in spite of the great advances in computer networking techniques.
and in spite of the wide attention that naming conventions have
received[1,2,3J. To date, most algorithms requiring node identification
assume that the names they need have been preassigned. Moreover, many
algorithms[4,5J assume that a unique name assignment is guaranteed.

In most networks names are assigned administratively--that is, by a
network operating authority rather then by the network itself; this is
usually done on a long term basis. Where name assignment is done dynam-
ically, such as in the packet radio network[6]. a centralized approach
is being used.

In military networks where survivw'bility is a major issue, the name
assignment problem being the heart of Lhe reconfiguration problem[7J,
becomes more acute. In mobile packet radio networks, where the network
can be partitioned and -constituted as a result of topological
changes or the deployment of airborne packet radios, or when the size of
the network becomes very large, name assignment becomes a matter of
being able to operate at all[8.9].

In the following sections we investigate the name assignment prob-
lem in full detail. The body of the paper contains only a descriptive
presentation of the algorithms, while details are reserved for the appen-
dices.
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B. ASIC APPROACH

In this paper we use the term network to denote a collection of
communicating entities interconnected by links in such a way that there
exists a path between each two entities and within which data destina-
tion can be uniquely specified. Network topology is not necessarily
fixed in time--neither are the number of entities and links nor their rela-
tive interconnection. (In this paper we shall use the terms *node" and
*entity" interchangeably; the term *subnetwork' will denote a network
that is about to merge with another.)

This definition is intentionally broad. It allows us to look at
the naming problem from a more abstract standpoint. For example, by
considering packet switches of a communication network as the entities,
our notion of a network matches the common definition. In another exam-
ple, if the entities are cluster controllers~g], naming deals with the
management of a higher level configuration. Thus "Internet' in the ARPA
taxonomy[1O) and *Group" in MINA taxonomy[7J are both networks according
to this definition.

Name assignment is the process of ascribing an identifier to each
member of a set of entities in a way that guarantees uniqueness within
that set. The names we ascribe are not globally unique, but have a lim-
ited scope both in time and space. However, they are guaranteed to be
unique in the domain in which they are generated and assigned.

The name assignment problem manifests itself in several situations:
1. Node restart. A new node needs to join an already operating

network after being inoperative for some period of time. This
node must be assigned a unique name to be used subsequently for
referencing that node, and its existence must be made known to
(all) other network nodes.

2. Node relocation. A node heretofore belonging to a network moves
to another operational network. This is a typical case in
packet radio networks.

3. Network merger. Two networks, heretofore operating separately,
wish to merge and become a single network operationally.

4. Network startup. A network that has been completely inoperative
is being started. All nodes of the network must be assigned
names.

We propose a simple approach for name assignment procedure which
* covers all the above cases. A node that does not have a name, such as

one that just became operational, chooses a name for itself and starts
looking for neighboring nodes to join them into a single network. When
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the new node becomes acquainted with its neighbor, it is assigned a new
name that is guaranteed to be unique within the newly formed network.
Node relocation is similar except that the affected node can use its old
name.

The same approach is used for the case of network merger. The pro-
cess starts when two neighboring nodes become acquainted and realize

*they belong to two different networks. These two nodes then coordinate
the merger of the networks, i.e., reassigning names such that within the
merged network names will be unique.

Network startup is a combination of the above two cases. Nodes
start by assuming a name for themselves and then join to form clusters
that gradually merge to form the final network. It should be noted that
network startup can (and probably does) start concurrently at several
nodes.

We propose a four-phased approach to name assignment. In the first
phase pairs of neighboring nodes get acquainted. In the second phase
the pair must decide whether their networks (or clusters) are indeed
distinct and should merge. In the third phase each of the two nodes

* alerts the other nodes in its subnetwork of the prospective merger and
* proceeds to phase four--the merger itself. An additional cleanup phase

might be added to perform network-specific operations before the name
assignment is over.

The algorithms used to achieve our goals are based on solutions to
two classical problems: mutual exclusion and leader selection. The
mutual exclusion algorithm proposed by Dijkstra[llJ, and for which
several solutions exist(12 .13J. is generalized to perform a mutual
exclusion for groups. Our election algorithm is based on those
described in the literature[14.15.16J. but is generalized to cover
several concurrent election algorithms that must be coupled.

The described algorithms are all distributed. Survivable networks
should not centralize any of their activities to avoid a single point of
failure. But that does not mean that the entire set of algorithms must
be distributed. One can, for example, adopt the approach that within
each network a leader is chosen distributively (by means such as
described in [15]) to coordinate name assignment thereafter. The defi-
ciency of this approach is the need for acquisition of status informa-

* tion by a new leader when it is first elected. Also, as is pointed out
later in this paper, some of the problems faced by a distributed algo-

7 rithm are not eliminated in a centralized environment.

We describe our procedure for radio networks in which each node is
assumed to have a unique ID and a name. Unique IDs are universally
unique and therefore positively distinguish all nodes from one another.
Unique IDs are used for authentication purposes only. Names. on the
other hand, are completely unrelated to unique IDs and are used for data
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destination specification, i.e.. they are used in packet headers.
Unique IDs are not used as names because the latter are likely to be
much shorter and usually have internal structure that is instance-
dependent.

The entire process starts when a node detects a new neighbor. The
detection mechanism itself is not specified. For example, a node can be
actively looking for a neighbor when it first comes up. or it can exam-
ine the 01 am alive* messages that are exchanged in radio networks to
establish network connectivity, to identify new neighbors. Once a new
neighbor is detected, the four-phased approach commences.

-4-



1il. IME EMLU PHASES OE NAME ASIGMENI

A. Phase 1: Getting Acquainted

This phase starts when a node detects a neighbor suspected of
belonging to a different network. In this phase we assume that all the
suspected new neighbors are indeed from different networks, leaving the
final resolution of that fact to the next phase. Since many nodes may
concurrently and independently detect neighbors, we consider here all
those nodes that have detected a potential new neighbor, as well as all
the potential neighbors themselves.

The purpose of this phase is to order these nodes in pairs so that
at least one pair is formed, the two nodes constructing a pair know each
other, and every node that does not belong to any pair is positively
notified so that deadlock will be avoided.

The get-acquainted (GA) algorithm described in Appendix A is
appropriate for that purpose. It is a special type of matching algo-
rithm. While most matching algorithms attempt to arrange a perfect
matching, the GA algorithm attempts to arrange only as many node pairs
as possible--with just one pair guaranteed (but many likely). Further-
more, most matching algorithms require that all participating nodes know
one another, whereas the GA algorithm operates in an environment in
which each node knows only its neighbors.

The full detail of the algorithm is given in Appendix A; stated
briefly it proceeds as follows. Participating nodes send a message,
each to its chosen neighbor, indicating that node's wish to get
acquainted. The message contains the node's unique ID, which is used to
reconcile conflicting requests and to form a partial ordering among the
nodes. Two types of messages are used: REQEST and REJECT, with the
REQUEST message serving also as acknowledgment. Two nodes that have
successfully exchanged REQETs are considered to have formed a pair.
A REJECT message is sent by a node in response to a REQEST message
when it is clear that the two will not constitute a pair, e.g. when the
node has already chosen a potential partner, but has not received final
confirmation.

Obviously, if two nodes send a REQUST to one another con-
currently, each interprets the other's message as an acknowledgment and

*they will thus have formed a pair. More complex situations are also
handled such as when the chosen neighbor has itself initiated a request
to another one, or when a loop of REQUET messages is created that may
lead to a deadlock.
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B. Phase 2: Determining Network Affiliation

Having made each other's acquaintance, the pair of nodes must now
decide whether or not they belong to the same network. Obviously, if
they have differenct network names they belong to different networks.
The difficulty arises when the nodes have the same network name--in
which case nothing can be said regarding their affiliation on the basis
of network names alone. Figure 1 illustrates this problem by depicting
two nodes. l and 2. both belonging to a network whose name is A. In one
case they belong to the same network, in the other they do not.

To resolve this complication, characteristics other than network
name must be considered. Let us assume that nodes Al and A2 have become
acquainted and that the corresponding network names are the same. Al
then checks whether a node whose name is A2 exists in its network (this
is an internal check that does not necessitate any message exchange); if
such a node does not exist. Al concludes that its partner belongs to a
different network. A2 performs an identical check. This check is not
decisive, however, since it is possible that the two belong to two dif-
ferent networks, each with both an Al and A2 node.

The 'local interrogation scheme' resolves such conflicts. Al sends
an interrogation message to the node named A2 in its own network asking
whether it has recently become acquainted with another node whose name
is Al and whose unique ID is that of Al. A positive response means that
the two belong to the same network and a negative response means they do
not.

The local interrogation scheme provides a decisive answer to the
affiliation question at the cost of two additional messages. It is pos-
sible to get a partial answer without the message exchange. For exam-
ple, the acquainted nodes can exchange (in the getting-acquainted phase)

A
--------- ---------

A A I I
--------- --------- Al-----------------A2II I I I I I I
I Al----------------A2 I ------------- +I I I iII
+---------+ +---------

-----------------------------
C.(a) (b)

Figure 1: Determining Node Affiliation
(a) Nodes belonging to different networks
(b) Nodes belonging to thesame network
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such characteristics as network size. intranetwork name, and a name bit
pattern. A name bit pattern (NBP) is a bit pattern having the ith bit 1
if name i is assigned to a node in the network and 0 otherwise. If the
sizes or the NBPs are different, the nodes belong to different subnet-
works, as is the case when the two nodes happen to have the same
intranetwork name. (It should be pointed out that the NBPs are further
used in Phase 4.) Since these characteristics may not yield a positive
resolution, nodes may still use the local interrogation scheme when all
else fails.

If either of the nodes determines that a merger should take place,
it sends a LETS-MERGE message to its partner. Once each partner has
sent and received such a message, both proceed to phase 3.

C. Phase 3: Electing Representatives

Having gotten acquainted with one another and deciding in favor of
a merger. the two nodes coordinate in phase 3 all necessary activities
before the actual merger takes place. Since many node-pairs may
independently and concurrently do likewise, they must all become aware
of one another. Figure 2 illustrates the problem.

In Figure 2a, nodes Al and A2 in network A have just completed
Phase I with nodes B1 and B2 of network B. Thus two pairs exist: Al-BI

and A2-B2, both attempting to merge the networks A and B. Since both
activities need not proceed simultaneously, one representative of each
network must be chosen.

A B
i -------I I------ i
I A1--+--------B1 I

A B I A2--+----------B2 i
+--------- +---------+ +---+---A3 i I B3--+---+
I I I i I---+---I I------II A1--+----+---B1 I [

I A2--+---------B2 I
i I i I D C
--------- --------- ------- ------- I

I D1-------------Cl I
I D2-------------C2 I

+---+----D3 I I C3--+---+

(a) (b)

Figure 2: The Need for Node Coordination
(a) Two networks
(b) Several networks
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A simple election process in each network of the type described in
* (15) is inadequate for two reasons. First, a deadlock will occur if Al

is elected in network A while B2 is elected in network B. Second, the
U members of the group in question (Al. A2, Bi. B2) do not all know one
* other as is typically required. Thisi the case in which two indepen-
*dent yet tightly coupled elections must take place.

Yet another situation is depicted in Figure 2b. Here a more com-
plex deadlock may occur, involving more than two subnetworks; this means
that a pair of networks must be decided upon before representative nodes

* are chosen.

As the first step toward overcoming these deadlock possibilities, a.
L group mutual-exclusion (GME) algorithm is executed in each network

separately. At the end of execution each node knows whether it should
* proceed. and if so, who else does.

The GUE algorithm which resembles the mutual exclusion algorithm
of (13] proceeds as follows. Two messages are used: REQUEST and ACK. A
node wishing to be selected (i.e., to enter the REQUEST message con-
taining a token. A node receiving a REQUEST replies with an ACK unless
it has previously sent a REQUEST or is in its critical section. The
elected group will consist of all those nodes that have received
responses from all others. The token is used to further subdivide the
group into subgroups. The REQUEST message may also be used to exchange
information among group members, to be used in subsequent steps. Full
details of the algorithm is given in Appendix B.

For our purposes the token used by each node is the network name of
its foreign neighbor. In each subnetwork the elected group there-lore
consists of all nodes that are neighbors to the highest numbered subnet-
work. All participating nodes =~ within the group notify their foreign
neighbors and postpone all further merger activity until some later
time.

Alternatively, one may use the pair (network-size, network-name) as
a token to ensure that merger between the two largest networks will take
place; network name is used to discriminate among equal-sized networks.
When more than one network name is involved, a token can be chost.n that.
in coordination with the neighboring subnetworks, guarantees exactly one
leader per subnetwork.

4 Consider now the group of all nodes in the various networks that
have been elected in the GME algorithm. It consists of an unknown
number of nodes belonging to an unknown number of networks with at most
two network names involved. Each node has a link to a node of another
network (its original neighbor). Figure 2b depicts such a situation
with 12 nodes in 4 networks in which A=C and B=D; another possible

4 situation would involve only one network name (i.e.. A=B=C=D).
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Next, one of the existing pairs must be chosen. Our approach is to
choose a single leader from the group that, with the aid of its partner,
will become the merging coordinators in the next phase. This is done
via the loop-based-tree mutual exclusion (LBT-ME) algorithm described
next.

Consider a graph created by the nodes in question with directed
arcs constructed as follows. Within each network every participating
node creates an arc to the node with the largest intranetwork name
(which is unique). The node with the largest intranetwork name creates
an arc to its partner in the foreign network. The resulting graph con-
sists of several subgraphs, each of which is a loop-based tree--i.e., a
loop to which all the rest of the nodes are connected in a treealike
manner; if any of the loop arcs is removed, a tree with directed arcs
remains. Figure 3 shows a loop-based tree.

Messages are sent along the arc's direction and include the
originator's unique ID. Each node-keeps track of the highest ID
observed by it, and only messages with higher IDs are passed along the
graph; the rest are dropped. A node receiving its message back is the
leader. The algorithm is described in detail in Appendix C. The chosen
leader than notifies its foreign neighbor and both become the coordinat-
ing nodes for the merger that takes place in the next phase.

0

l0\V/

/
--->-0 --<---0-<---0 0

/ /

.\ / \\//

-!0 -- > --- o0-->--o o-<--o

... Io--<--o o-< --- 0
o~0--- >--o/I\

/ \ / Io-<--o
/ 0--->---0 0

:- o--> --- o\

/IX o

00

Figure 3: A Loop-Based Tree Topology
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Note that the GME executed previously is necessary to assure that
within each network all nodes that completed phases 1 and 2 are aware of
one another, as required by the LBT-ME algorithm.

D. Phase 4: Network Merger

At the beginning of phase 4 there exist two neighboring nodes, one
from each subnetwork, that have been chosen to monitor the merger that
is performed in this phase. These nodes, which we call merger-
coordinating nodes, send to one another a MERGE-REQ message to indicate
their readiness. When each node has both sent and received such a mes-
sage, the two subnetworks merge, i.e., names may be reassigned so that
all names within the combined network will be unique.

The actual assignment of names to the nodes of the combined network
cannot be discussed in general since names often have environment-
specific structure. In the following discussion we shall examine a
method for node renaming in a flat name space.

The simplest statement of the problem is this: given two sets of
nodes A and B each with unique node names Na and Nb , respectively, one
needs to construct a new set of nodes C=A U with nimes Nc. such that

". these names are unique. A practical solution must be an alkorithm that
terminates very fast, for all other data transmission services must be

-.! suspended when a network is being renamed. To expedite the termination
'" of renaming it is desirable to

o Provide a renaming scheme that is computationally simple and
requires very little message exchange.

o Minimize the number of nodes that are actually renamed.

o Be able to perform the renaming in parallel with several starting
points.

A simple way to achieve the above goals is the following. The
larger of the two networks, say B. is left untouched--that is. all its
nodes retain their intranetwork name as well as their network name.
Nodes in network A whose intranetwork name is not in use in network B
retain their intranetwork name (the network name will be that of B).
intranetwork name. These are deduced from a name bit pattern that is
broadcast by merging coordinator.

Formally, let NBPA and NBPB be A's and B's bit pattern (assumed
1known by all nodes in A). Node i performs the following:

4

.. - 10 -
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if NOT NBPB[i] then
count:=O;
for k:=1 step 1 until i do

if (NBPA'NBPB)[i] then count count+1;
newname:=1;
for k:=1 step 1 until count+1 do

while (NBPA+NBPB)[newname] do newname newname+1
else

newname:=i;

Upon completion 'newname' is the new intranetwork name for node i.

This algorithm is simple, can be performed in parallel by all nodes
and requires the transmission of only one message per node of network A.
Moreover, every node can compute every other node's new name, so that
packets in transit need not be retransmitted; their destination specifi-
cation must be changed instead.

The algorithms described in the previous subsections have a partic-
ular feature in common: they are time-independent, that is. time plays
no role in any of the steps. This does not mean that time should not be
used. For example, it may be advisable to use time-outs to verify that
nodes have not crashed in the midst of a critical operation, such as in
the middle of phase 3. leaving the network in an undesired state. The
time independence of the algorithms themselves makes the use of timeouts
for the purpose of improving robustness more powerful.

These algorithms work remarkably fast for simple configurations.
For example, when only two nodes are involved (a frequent situation) the
GA and LBT-ME algorithm each require one message from each node. The
renaming and GME algorithms require one and two messages respectively.

*: per subnetwork node.

Regular data delivery can proceed normally during phases 1. 2. and
3. as well as during part of Phase 4 provided nodes are properly coordi-
nated. The only 'dead period' is between the time the node gets the
renaming message until it completes the computation of the new names.
To remain synchronized with respect to names, nodes must be able to
interpret the names in all incoming messages properly. This can be done
by inspecting the network name or by using phase numbers for each renam-
ing cycle.

All these algorithms work similarly in wired point-to-point net-
works, since no particular use of the medium is made. It should be
pointed out, though, that in broadcast networks the GME algorithm can be
implemented more efficiently.

I
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Finally, a word about centralized systems. Here we assume the
existence of a 'name assignment center.' responsible for assigning names
to nodes. Such a configuration does not change the nature of phase 1--
the GA algorithm must be used to elect a pair of assignment centers from
two neighboring networks. A modified phase 2 is necessary if one
assumes that the center does not (or cannot) store all the unique IDs of
the nodes under its jurisdiction. Phase 3 can be completely eliminated
as all decisions are made within the center. Phase 4 remains unchanged
with the name assignment centers playing the role of the merger coordi-
nating nodes.

F. Topologies Without Unique IDs

The lack of unique IDs manifests itself in all phases of the name
assignment process. In fact, in an environment where nodes cannot be
positively distinguished from one another, name assignment cannot be
accomplished. That is. the uniqueness of names cannot be guaranteed
within any given set of (more than two) nodes.

Consider, for example, the topology depicted in Figure 4, where two
nodes named A and two named B are positioned such that each A hears both
B's but not the other A, and each B hears both A's but not the other B.
As a result A will not be able to distinguish between the two B's and,
since there is a nonzero probability that both B's will generate the
same sequence of random numbers, this situation will persist.

Unique IDs are used for purposes of authentication and ordering,
neither of which can be provided absolutely in this environment. The
crux of the problem is the fact that the nodes need to conduct dialogues
with single destinations. It is insufficient for the nodes to verify at
the beginning of the dialog that they are the only two partners of a

A
/ \

/ \
/ \

/\
/\

B B/ \

\ /
\ /

\/
\ /

A

Figure 4: Deadlock situation in radio networks
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conversation. This activity must go on continuously for the duration of
the conversation as another node my. at random, assume the same ID as
one of the original participants.

Name assignment can. however, be accomplished with an arbitrarily
high probability of success by choosing IDs from a large domain or by

" repeating crucial steps of the algorithm several times each with a newly
selected ID. The appendices elaborate on the difficulties caused by the
lack of unique IDs in any one of the phases.

Practically, name assignment in an environment without unique IDs
seems too complex to be worthwhile implementing. If reliance on a
built-in unique ID in every node is to be avoided, mixed mode could be
considered. There are two mixed-mode possibilities:

1. Using semiunique IDs--that is, IDs composed of two fields, one
of which is constant and highly likely (but not guaranteed) to
be unique, while the other is a random number chosen dynamically
by the node. Thus, the algorithms will have to be repeated only
a small number of times (if at all) to guarantee success with a
high probability.

2. Using two kinds of nodes, some with an absolutely guaranteed
unique ID and some without. Those with unique IDs will be able
to participate independently in all phases and provide a refer-
ence for those without unique IDs. The latter will have to con-
sult the former before critical steps are taken.

- 13 -
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A. hE ME-ACLQ(INIED (GA) ALGO THM

1. Definition

A get-acquainted algorithm is one that arranges the participating

nodes in pairs while ensuring that:

o At least one pair is formed

o Each participating node knows whether or not it is one of a pair

o Two nodes comprising a pair know each other.

2. Description

The GA algorithm we propose starts by having som of the partici-
pating nodes send a request to a node of their choice. A directed graph
is thus constructed, with the arcs directed from the originator of the
request to its destination. The graph thus formed is not necessarily
connected. The topology of each of the connected subgraphs is either
linear or a loop-based tree. (A loop-based tree is a topology in which
at most one directed loop may exist; if one arc of the loop is removed,
a tree is left.)

The arcs represents bidirectional communication links. Because
there is no communication among the sibgraphs the algorithm operates on
each of the subgraphs independently. The description that follows
assumes, without loss of generality, that the entire graph has the loop
based tree topology.

Loop-based-tree topologies are reduced even further by having each
node select one of the arcs pointing toward it. and deleting all the
rest. The loop based tree is then partitioned into a set of graphs con-
taining at most one loop and perhaps several linear configurations.
Within each of these graphs we form pairs from adjacent nodes. IDs are
used to break a deadlock if a loop is constructed.

3. Specification

Each participating node must obey the following conditions:

C1. Each node chooses at most one successor and one predecessor.

C2. A pair is formed when two nodes receive nonforwarded requests
from each other.

In addition, each node operates according to the following rules:

R1. Messages received from neither the predecessor nor the succes-
sor are rejected.
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R2. A node with a predecessor but no successor forms a pair with
its predecessor (by sending it a request).

K;R3. For as long as a node is not included in any pair, it forwards
to its successor all requests it receives from its predecessor
that originated at a node with a higher ID.

R4. A node rejects its predecessor when

(a) It has formed a pair with its successor.

(b) It has received a message originated by itself.

4. Proof of Features

*Feature 1: At-least one pair is formed.

As a result of Condition C1, each node deals with only two nodes--
*its predecessor and its successor. Each node can therefore be part of

either a linear or circular configuration.

In a linear configuration, there is one node with no successor.
According to rule R2. this node will form a pair with its predecessor.

In a circular configuration, the request originating at the node
with the highest ID is forwarded by all nodes (according to rule R3)
until it arrives at its originator. According to rule ROb. the origina-
tor rejects its predecessor--which then becomes a node without a succes-

* sor and subsequently forms a pair in accordance with rule R2.

In the degenerate case in which only two nodes are involved, the

original exchange of requests immediately forms a pair (Condition C2).

Feature 2: Each member of a pair knows the other.

* This is trivially true by virtue of Condition C2. [

Feature 3: Each request is answered.

As a result of Feature 1. at least one pair is formed. We now con-
* sider the successor and predecessor nodes of this pair.

According to rule R4a the predecessor node is obviously notified.
*This node then becomes one with no successor, in which case rule R2

applies (as long as this node itself has a predecessor). The formation
of pairs thus propagates in the predecessors' direction.



Now observe the successor of the pair. The pair could have been
formed only if,at that time, it had no successor (rule R2). This could
happen if the pair never had a successor or if the successor sent a
rejection message. Rejection, in turn, is sent only by a node that has
formed a pair (rule R4a) or by a node has detected a circular configura-
tion (rule R4b) that still has a successor from which a message will
eventually arrive. []

Feature 4: The GA algorithm terminates.

The algorithm terminates when no more messages are in transit.
Feature 3 assures that each node knows whether it is single or part of a
pair, and will therefore cease generating messages. The only messages
still possibly in transit are those being forwarded; according to rule
R3, however, these will be ignored and stopped upon arrival at a node
that belongs to a pair (of which, according to Feature 1, there is at
least one). []

It can easily be shown that the above rules and conditions address
all the messages that might be received:

o Messages received from neither the predecessor nor the successor
are covered by rule R1

o Requests from the predecessor are covered by rule R2 or R3
depending on whether the receiving node has a successor.

o Condition C2 covers requests received from the successor.

o Rejections received from the successor are covered by rule R2

o A rejection from the predecessor cannot arrive since rejections
are sent only to predecessors (rule R4).

Since the treatment of all possible messages is specified, and
according to Features 1 through 4 our goal is achieved, the GA algorithm
is correct as long as there exists a node to issue the first request.

5. Specification--Take 2

The GA algorithm can be equivalently specified by the following
Algol-like code:

INITIALIZATION
successor = 0
predecessor = 0
tail = FALSE

Local request(destination)

1: if successor != 0 then
2: send(destination, REQUEST)
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3: successor = destination

Receive REQUEST(from. orig)

4: if successor = 0 then %Original request %
5: send(from. REQUEST(myid, myid) ) %send ACK%
8: exit(from)
7: else if successor = from then %this is an ACK%
8: if predecessor 1= 0 then send(predecessor. REJECT)
9: exit(successor)

10: else % successor NEQ 0 %
11: if predecessor = 0 then % first request %
12: predecessor := from
13: if orig > myid then send(successor, REQUEST(myid. orig))
14: else % predecessor NEQ 0 %
15: if from != predecessor then
16: send(from, REJECT)
17: else % from = predecessor %
18: if orig > myid then
19: send(successor, REQUEST(myid. orig))
20: else if orig = myid then %got my msg back
21: send(predecessor. REJECT)
22: tail := TRUE
23: else % orig < myid %
24: NIL

Receive REJECT

25: if tail then
28: exit(O)
27: else
28: send(predecessor, REQUEST(myid, myid) ) %this is an ACKI
29: exit(predecessor)

In the foregoing, predecessor and successor are the corresponding
IDs (0 is assumed to be an illegal one), and tail is a boolean variable
indicating the detection of a loop. In addition, the above specifica-
tion meets all conditions and rules:

o condition C1 is met in lines 1-3 for the successor and 11-12 for
the predecessor.

o Rule C2 is met in lines 5, 9, and 28. (In these lines it is
shown that REQUEST messages have been directly exchanged between
two adjacent nodes).

o Rule R1 is obeyed in lines 15-18

o Rule R2 is obeyed in lines 5 and 28

o Rule R3 is obeyed in lines 13, and 18-19

o Rule R4a is obeyed in line 8 and rule R4b in line 21.
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The if-else nesting demonstrates that each message is treated
exactly once and that all cases are covered.

6. Configuration- Without Unique IDs

The algorithm must be adapted slightly to operate in an environment
where unique IDs are not available. The main difficulty is that of
abiding by condition Ci. since a node may not be able to determine if it
has more then one successor or more then one predecessor.

With regard to the rules there is clearly no problem in obeying
rule R1. Obeying rule R4 is proper, as it is intended to reject all
predecessors (in the original algorithm only one existed). Conformance
to Rule R3 may cause inefficiency if a node has more than one successor;
in this case, forwarded messages propagate to branches they do not have
to, but do not cause any harm thereby.

Rule R2 is the only one needs to be adapted because one must ensure
that a given node is not a partner in more than one pair. If a node has
two (or more) successors and if either of them attempts to form a pair
with their common predecessor, ambiguity results (obviously there is no
problem if both reject). A similar problem occurs when a node deter-
mines it has to form a pair with its predecessor, but cannot direct its
response to only one (and may not know it has many).

A possible solution is an authentication step once pairs have been
formed. In this step a sequence of random numbers is exchanged between
the parties (a node with its successors or a node with its predecessors)
with the hope that they will eventually generate different numbers and
become distinguishable. If random numbers are equally distributed with
p being the probability of selecting any given number, then the proba-
bility of k nodes generating the same random numbers in r attpmpts is
pr(k-1) and the total probability of failure is bounded by -!;" This

probability obviously approaches 0, and faster the larger tAePdomain of
random numbers.

19
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* ~B. MhE GROUP UMIAL EXCWUSO ALGORITHM

1. Description

Let there be a network with N processes (or nodes). all known and
reli;ably accessible to one another (either directly or indirectly). The
GME algorithm distributively selects a group of processes that con-
currently try to achieve the same goal. The problem is identical to
that of mutual exclusion but does not impose the constraint that exactly
one process must be in the 'critical section'. Instead it requires that

o A group of processes wishing to enter the critical section can do
so only if a.J processes that have previously been in the criti-
cal section have already left it.

o All processes that form a group (i.e.. are entering the critical
section together) must know one another.

The approach to a solution (and therefore to the proof) is similar
to that of[131. Time is divided into sequentially numbered cycles. A
process wishing to join the group sends a request message to all members
of the group (possibly utilizing a broadcast facility). The request

* message contains the cycle number and a token, that is used subsequently
* to determine which processes actually form the group. If all processes

use the same token, all requestors join the group.

A process receiving a request acknowledges it immediately unless it
is attempting to join the group itself, i.e., has transmitted a request

A process that has issued a request will eventually receive a mes-
sage (in the current cycle) from each of the other N-i participants--a
request from each process attempting to enter the group and acknowledg-
ments from those that are not. This part of the algorithm terminates
when all members of the group have received a response.

The next step is a distributed decision as to who should remain in
*the group. This can be done by using information already transmitted,

such as the token, or by an explicit exchange of messages among the
group members. Finally, to proceed to the next cycle, a COMPLETE mes-
sage must be sent, signifying that all those in the group have left
their critical section.

2. Specification

The algorithm is presented now in an Algol-like language, using
4send and receive processes that run asynchronously and share data.
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SHARED DATA

integer cycle..num INIT 1
boolean req..jock INIT FALSE
boolean array current, next
constant integer myid. N

SEND PROCESS
% invoked when this node wishes to enter critical section%

P 5: if req-lock then next(myidJ : TRUE
S2: waitfor( req-jock = FALSE)
S3: transmit..REQUEST(myid, cycle..num)
S4: req-lock :=TRUE
S5: current~myidJ : TRUE
SB: reply-..count := N-1
57: waitfor(reply..count = 0)

% critical section here possibly including
Se. transmitSCOMPLETEWk %
S9: RESET

RECEIVE PROCESS
% Invoked when a message arrives%

REQUEST(id. num)

Ri: if num > cycle-num then nextfid] TRUE
else

R2: current~id] :=TRUE
R3: if NOT current~me) then sendACK~myid. id)
R4: req..lock :=TRUE
R5: reply-..count = reply..count-I

ACKCi d)

R:reply-.count =reply..count-i

COMPLETE (I)

if NOT current Emyid] then
R7: reply-..count := reply..count+k
RB: waitfor Creply-.count=O)
Rg: RESET
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RESET
Invoked explicitly %

increment cyclenum
current := next
clear next
if current myid] then

reqLlock := FALSE
else

for j:=l step 1 until N do
if current(j] then

send(ACK, j)
reply-count := reply-count-1

rea-lock (replycount<O)

3. Discussion

In the above specification

o The 'transmit' and 'send' functions cause messages to be sent;
the former to all other processes and the latter to the specified
destination.

o The number k contained in the COMPLETE message indicates the
number of group members in the specified cycle.

o The 'increment' construct performs a modulo C increment. It is
shown in the following that modulo 2 counting suffices.

o The reqlock flag serves to ensure that at most one REQET is
sent per cycle from any given source.

o The ith entry of the current and next arrays records whether or
not process P. belongs to the group of the current and next
cycles, respectively.

The COMPLETE message causes the process to wait until all k
requests of that cycle have arrived. The algorithm does not specify
which process sends the COMPLETE message, but requires that only one
message per group be sent. Note that if this process does not partici-
pate in this cycle, its reply-count is negative, since it started with 0
and was decremented during the process. In this state the reply count
will therefore reach 0 from below.

The cycle ends when all expected messages have arrived. At this
time the ith entry of the current array is TRUE if P is a member of the
group and FALSE otherwise. Before proceeding, the sate is reset by
making the next array the current one. transmitting a REQUEST or send-
ing ACKs to all thove to whom it was deferred, and possibly releasing
the lock.

Message traffic is as follows. Assume k processes out of all N
wish to enter the critical section. Each of the k processes broadcasts
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a request to all others, resulting in k(N-1) messages; each of the other
N-k processes sends an ACK to each of the k group members resulting in
k(N-k) additional messages. Finally one of the group members sends
COMPLETE message to the N-k nonmembers. Thus a total of 2k(N-1)+N-k
messages is sent.

The algorithm does not enforce fairness. One could, as part of
RESETting. ensure that a process that participated in the current group

"* will not participate in the next one. Also, if the number of group
members is limited, those elected need to decide--in some fair way--who
stays and who does not, so that no process-will be permanently excluded.

4. Proof of Features

The following observations can be made:

o RESET is called only once in every cycle, at the point where the
process perceives the end of cycle, i.e., when all expected mes-
sages have arrived (lines S8, Rg).

o RESET is the only place where cycle-number is incremented and
where the req-lock may be set to FALSE.

o The entry 'current myid]' is set only after a REQET has been
transmitted.

Feature 1: Messages are exchanged between two processes only if at least
one of them attempts to enter the critical section.

REQESTs are sent only if a process attempts to enter the critical
section; ACKs are sent only in response to a REQUEST (line R3). []

Feature 2: Within each cycle at most one message is sent from any pro-
cess to any other process.

We observe the generation of both REQET and ACK messages. These
are governed by the two booleans reqlock and current(myid] correspond-
ingly. Both booleans are being reset only once per cycle--during RESET.

The transmission of a REQUEST causes the setting of both reqlock
and current~myid] (lines S4, S5) to preclude the transmission of any
further messages from this process during this cycle. (As a result, at
most one REQUEST per cycle can be sent from any process.)

Sending an ACK causes the reqlock to be set, thereby precluding
any subsequent transmission of REQUESTs in that cycle. ACKs are sent
only if a REQUEST has not been transmitted (line R3) and only in
response to a REQUEST (hence, only one per destination). ]

Feature 3: No process will receive a message with a cycle number outside
the range [cyclenum,cycle.num+l]
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Assume the contrary.

Assume that process P receives a message from process P contain-
ing a cycle number cnum<cylenum. Since cycle numbers increlse mono-
tonically, P. participated in a cycle where cnum was the prevailing
cycle.num, b~t incremented it. Incrementing is done during RESET,
immediately after all expected replies have arrived. In particular, a
message (REQEST or ACK) must have arrived from P carrying cnum. As a
result of Feature 2, only a single message could gave been sent from P
to Pi during that cycle. We thus have a contradiction.

Assume that P has received a message from P with
cnum>cyclenum+l, This message must be a RWJEST since an ACK could
come only in response to P 's REQUEST which has not yet used a cycle
number greater than its cyle-num. P, having sent a REQEST with

* cnum, must have decided that the cycli in which cyclenum+1 was the pre-
vailing cycle number had terminated, implying that an ACK from P. had
arrived. This is a contradiction because P could not have tranimitted

* a REQUEST with a cycle number greater than tyclenum (line S3). [

Corollary: Only the current and next cycles need be identified and thus
cycle numbers can be counted modulo 2 (1 bit)!

Feature 4: All cycles end.

A cycle ends when a process receives all the messages belonging to
that cycle. By Feature 2. it is sufficient to count the replies as
there will be at most one reply from any other user. Counting is done
by decrementing a counter every time a regular message arrives (lines
R5. RB) and watching when the counter reaches 0. We distinguish two
cases, depending on whether or not this process has sent a REQJM.

A process is never blocked in sending a response. Upon receiving a
REQUEST it immediately sends an ACK unless it has previously sent a
REQUEsT. This response eventually arrives at the requestor. Thus. if
a REQUEST is transmitted all N-1 responses eventually arrive. The
counter that has been set to N-i (line S6) will be decremented N-i times
and reach 0 at the end of the cycle.

If this process did not send a REQUEST in the current cycle, it
. replies with ACK to all k arriving REQUEs, decrementing the counter k

times. The arrival of the COMPLETE message increments the counter by k.
resulting in a zero counter (a cycle always starts with a zero counter).

Feature 5: The algorithm is deadlock free

Deadlock is a situation in which a process waits indefinitely to
. enter the critical section. As a result of Feature 4 all cycles end
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* and, because writing into the next is permitted if immediate REQUEST
transmittal is not (line SO), a process is guaranteed to be able to
transmit its REIIJEST and enter the critical section thereafter. [

Feature 8: Group mutual exclusion is achieved

Group mutual exclusion is achieved if all group members know one
another and if new groups are formed one at a time. Since each cycle
ends (Feature 4) all messages must have arrived. The arriving REQUET
messages (marked in the current array) correspond to the group members.

New cycles start only after RESET, which is executed when all mes-
sages have arrived (lines S7. R8). i.e., when the cycle ends. Conse-

7 quently, a new cycle starts only after the previous one has ended. (
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Q. E L= BS- MUTUALXCLUN ALGOR~THMA

onaIn this appendi~x we describe a mutual-exclusion algorithm operating
onanetwrok with a loop-based-tree topology. A loop-based tree is a

topology with a single directed arc emanating from each node; the topol-
ogy consists of exactly one loop such that if an arc belonging to the
loop is removed a tree results. The LBT-ME algorithm differs from the
standard mutual exclusion algorithm in that the nodes do not all know
one another; each node knows only its immediate neighbor, and the net-.
work topology is simplified.

1. Description

The algorithm starts by having Baah node choose a single other node
(called its successor) and send it a message containing the sending
node's unique ID. Messages with high IDs are forwarded by each node to
its successor, until one node receives a message it has already seen.
This node then becomes the leader.

A few remarks concerning this algorithm

o To become a leader, a node needs to receive a message it has
already seen and not necessarily originated because, in the loop
based tree topology only a node on the loop can possibly see the
same message twice.

o This is a mutual exclusion and not an election algorithm as the
leader is the only one that knows it was elected. To inform all

* . other nodes the leader' identity, each node, starting with the
* leader, can send to all its predecessors a termination message

carrying the leader's identity; because of the tree structure
this message will propagate efficiently to all nodes.

o The message traversing the loop first (thereby determining the
leader) is not necessarily the one originating at the node with
the highest ID.

2. Specification

It is assumed that all messages carry unique IDs in them. The fol-
lowing rules are obeyed by each node:

1. It originates a single message to a destination of its choice
(called its successor).

2. It records the highest ID it observes in any of the messages it
handles. including its own. (We refer to this as the 'recorded
ID'.)

43. It forwards to its successor all messages it receives with an ID
higher than its recorded ID.
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4. It discards all received messages with an ID lower then its
recorded ID.

5. A node receiving a message with an ID equal to its recorded ID
becomes the leader (which then ceases to forward messages).

3. Proof of Features%

Feature 1: Rules R1 through R5 are comprehensive

There is only a single kind of message traversing the graph in a
-* single direction (rules 1. and 3). Rules 3-5 govern the handling of all

possible messages .

Feature 2: The leader resides on the loop

This is trivially true, since other nodes will not receive their
messages back (as is required by rule 5). [

Feature 3: At most one leader is selected.

* Assume the contrary. i.e., two leaders A and B are selected.
* Assume further, that A's ID is higher then B's. Consider the events

that led to this situation. By feature 2. both A and B reside on the
loop and must therefore have seen each other's message. If B's message
passed A after the latter transmitted its message. B's message would not
have been forwarded (Rule 4) and thus B could not become the leader. If
B's message passed A before it transmitted its message. B's message
would arrive at B before A's. Thus B becomes the leader and would not

* forward A's message (Rule 5). which means that A could not become the
leader. In either case we have a contradiction. :

As a result of Feature 3. and because each node originates a mes-
sage, a leader will be elected. Feature 1 provides the necessary argu-
ment for assuring the correctness of the algorithm.

4. Configurations Without Unique IDs

To adapt the algorithm to an environment without unique IDs, we
make the following changes in the original algorithm:

0 The original algorithm is considered a single round, and is
* repeated r times (r is a predetermined constant).

o Messages carry both a round number and an ID randomly generated
by each node (a different one for every round).

o The pair (round-number, random-ID) is used instead of IDs for
* . comparisons under all rules.
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o A node that has been elected all r times is considered a leader.

This algorithm still has a probability of terminating incorrectly.
'U i.e.. with more than one leader elected. Obviously, if two or more

nodes on the loop generate the same ID. more than one leader will be
elected. There is a nonzero probability that this would reccur all r
rounds.

It is also possible that a leader not on the loop will be chosen.
Consider two nodes on a tree branch, one a successor of the other,
choosing the same random ID. The second of the two, upon receiving the
message of the first, thinks it is its own message and completes the
round. For this to happen in r rounds requires that at least r nodes on
the same branch of a tree choose the same number in the first round.
that all the leaders (at least r-1 of them) again choose the same
number, and that finally in the r-1st round, two nodes select the same
number. A branch must contain at least k+r-1 nodes to generate k
leaders in r rounds.

It should be noted that since unique ID are not available, desti-
nations may not be unique; therefore the topology generated is not
necessarily a loop based tree. This fact decreases the efficiency of
the algorithm (more messages are sent) while increasing the probability
of failure.
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